Supporting Information (ms. ol0526219)

General Methods

Melting points were determinated with an Electrothermal IA 9100 and are uncorrected. NMR spectra were taken with a Varian VRX 400S (400.0 MHz for ¹H, 100.5 MHz for ¹³C (referenced on solvent signals)). All measurement were carried out at 300 K. Mass sectra were obtained with a Finnigan MAT95Q and a Thermo Finnigan LTQ FT spectrometer. IR spectra were recorded with a Perkin-Elmer PE 1600 FT-IR spektrometer. UV/Vis spectra were measured with a Perkin-Elmer Lambda-16 UV spectrometer. Chemicals were purchased from commercial suppliers and were used without further purification. Silica gel 60 (0.040-0.063 mm, Merck) was used for flash chromatography.

rac-(2-Amino-6,8-dioxo-7-phenyl-1-trityl-1,4,5,5a,6,7,8,8a-octahydro-imidazo[4,5-e]isoindol-5-ylmethyl)-carbamic acid *tert*-butyl ester (5) and rearranged product 6

A solution of **3** (60 mg, 0.13 mmol) and **4** (44 mg, 0.40 mmol, 2 equiv.) in CHCl₃ (20 ml) was stirred at room temperature for 88 h. The reaction mixture was concentrated in vacuo and purificated twice by flash-chromatography [silica gel, CHCl₃/MeOH (40:1); then ethyl acetate]. Racemic product **5** was obtained as pink solid (54 mg, 0.08 mmol, 66 %).

Spectral data for **5**: **mp**: 140-143 °C (decomp.). **TLC** [silica gel, CHCl₃/MeOH (30:1)]: $R_f = 0.11$. ¹**H NMR** (400.0 MHz, CDCl₃): $\delta = 7.44-7.40$ (m, 6H, phenyl-CH), 7.37-7.32 (m, 10H, phenyl-CH), 7.30-7.27 (m, 2H, phenyl-CH), 7.10-7.01 (m, 2H, phenyl-CH), 5.34 (dd, ³J = 5.6, 5.9 Hz, 1H, NH), 3.64 (m, 2H, NHCH₂), 3.58 (s, 2H, NH₂), 3.29 (m, 1H, 5-H), 3.16 (dd, ³J = 9.2, 7.0 Hz, 1H, 5a-H), 2.63 (dd, ² $J = 15.9, ^{3}J = 2.7$ Hz, 1H, 4-H₁), 2.43 (d, ³J = 9.2 Hz, 1H, 8a-H), 2.10 (dd, ² $J = 15.9, ^{3}J = 12.2$ Hz, 1H, 4-H₂), 1.45 (s, 9H, C(CH₃)₃). ¹³C NMR (100.5 MHz, CDCl₃): $\delta = 176.4, 174.2$ (C-6, C-8 (C=O)), 156.2 (NHC=O), 152.9 (CNH₂), 141.6 (3C, phenyl- C_{quart}), 138.6 (CH₂CNC), 131.7 (phenyl- C_{quart}), 131.3 (6C, phenyl-CH), 129.1 (2C, phenyl-CH), 128.7 (phenyl-CH), 128.2 (3C, phenyl-p-CH), 127.9 (6C, phenyl-CH), 126.6 (2C, phenyl-CH), 115.9 (CHCNCN₂), 79.4 (C(CH₃)₃), 76.1 (CPh₃), 42.5 (NHCH₂), 42.1 (C-5a), 39.0 (C-8a), 38.1 (C-5), 28.5 (3C, C(CH₃)₃), 26.8 (C-4). MS (ESI): m/z (%) = 654 (4) [M+H⁺], 553 (1) [(M-Boc)⁺], 412 (4) [(M-Tr+H)⁺], 243 (100). **HRESIMS** (C₄₀H₄₀N₅O₄): calcd. 654.3075, found 654.3025. **IR** (KBr): $\tilde{v} = 3436$ cm⁻¹, 2976, 2929, 1711, 1624, 1532, 1497, 1446, 1382, 1249, 1169, 904, 747, 704, 568. **UV** (MeOH): λ_{max} (lg ε) = 339 nm (2.89).

Compound 5 rearranged completely to product 6 within 11 d in $CDCl_3$ and characterized without further purification.

Spectral data for **6**: ¹**H NMR** (400.0 MHz, CDCl₃): $\delta = 7.44-7.39$ (m, 2H, phenyl-CH), 7.37-7.32 (m, 6H, phenyl-CH), 7.30-7.21 (m, 10H, phenyl-CH), 7.08-7.01 (m, 2H, phenyl-CH), 6.35-6.15 (s, br, 1H, NH), 5.26 (s, br, 1H, NH), 3.83 (s, br, 1H, 8a-H), 3.68-3.51 (m, 2H, NHCH₂), 3.44 (dd, ³J = 7.3, 4.0 Hz, 5a-H), 2.47-2.32 (m, 2H, 5-H, 4-H₁), 2.17 (dd, ²J = 16.5, ³J = 10.5 Hz, 1H, 4-H₂), 1.43 (s, 9H, C(CH₃)₃). ¹³C NMR (100.5 MHz, CDCl₃): $\delta = 176.5$, 174.4 (C-6, C-8 (C=O)), 156.2 (NHC=O), 149.5 (NCNH), 144.5 (3C, phenyl-C_{quart}), 133.0 (CH₂CNC), 131.5 (phenyl-C_{quart}), 128.9 (2C, phenyl-CH), 127.5 (phenyl-CH), 128.6 (9C, phenyl-CH), 128.4 (6C, phenyl-CH), 126.3 (2C, phenyl-CH), 112.3 (CHCNCN₂), 79.4 (C(CH₃)₃), 71.1 (CPh₃), 43.2 (NHCH₂), 42.2 (C-5a), 40.5 (C-8a), 35.0 (C-5), 33.7 (C-4), 28.4 (3C, C(CH₃)₃). **MS** (FAB+, NBA): m/z (%) = 655 (2) [M+H⁺], 243 (100). **HRFABMS** (C₄₀H₄₀N₅O₄): calcd. 654.3075, found 654.3033.

[3-(2-amino-1-benzyl-1*H*-imidazol-4-yl)-allyl]- carbamic acid *tert*-butyl ester (6)

Sonogashira reaction:

Prop-2-ynylcarbamic acid *tert*-butyl ester (4.35 g, 28.0 mmmol, 2 eq.) in dry THF (20 ml) was added slowly to a mixture of 1-benzyl-4-iodoimidazole (3.98 g, 14.0 mmol), copper(I)iodide (267 mg, 1.4 mmol, 10 mol-%), bis(triphenylphosphine)palladium dichloride (246 mg, 0.4 mmol, 2.5 mol-%) and diisopropylamine (2.98 g, 29.5 mmol, 2.1 eq.) in dry THF under argon atmosphere. After 24 h the reaction mixture was filtered and the solvent was removed in vacuo. Purification by flash-chromatography [silica gel, isohexane/ethyl acetate (1:1)] afforded the Sonogashira product as yellow oil (2.11 g, 6.8 mmol, 48 %).

[3-(1-benzyl-1*H*-imidazol-4-yl)-prop-2-ynyl]-carbamic acid *tert*-butyl ester :

TLC [silica gel, isohexane/ethyl acetate (1:1)]: $R_f = 0.10$. ¹H NMR (400.0 MHz, CDCl₃): $\delta = 7.44$ (s, 1H, NCHN), 7.37-7.31 (m, 3H, phenyl-CH), 7.15-7.12 (m, 2H, phenyl-CH), 7.02 (s, 1H, NCHCN), 5.05 (s, 2H, CH₂Ph), 4.82 (m, 1H, NH), 4.10 (d, ³J = 5.0 Hz, 2H, NHCH₂), 1.43 (s, 9H, C(CH₃)₃). ¹³C NMR (100.5 MHz, CDCl₃): $\delta = 155.3$ (NHC=O), 137.3 (NCHN), 135.4 (phenyl-C_{quart}), 129.1/128.5/127.4 (3C, phenyl-CH), 124.4 (NCHCN), 123.2 (NCHCN), 85.4 (NHCH₂CC), 79.8 (NHCH₂CC), 76.3 (C(CH₃)₃), 51.1 (CH₂Ph), 31.2 (NHCH₂), 28.4 (3C, C(CH₃)₃). **MS** (EI): m/z (%) = 311 (5) [M⁺], 91 (100). **HREIMS** (C₁₈H₂₁N₃O₂): calcd. 311.1634, found 311.1632.

Azidation:

To a solution of the Sonogashira product (1.50 g, 4.8 mmol) in dry THF (50 ml) under argon atmosphere at -78 °C was added *n*-BuLi (6.6 ml, 1.6 M in hexanes, 10.6 mmol, 2.2 eq.). After 30 min at -78 °C and 10 min at room temperature to solution was cooled again to -78 °C and tosyl azide (1.42 g, 7.2 mmol, 1.5 eq.) in dry THF (5 ml) was added. After 5 min the reaction was quenched with pH 7 buffer solution (25 ml) and brine (25 ml). After extraction with dichloromethane (3 x 50 ml) the combined organic layers were dried over MgSO₄, filtered and evaporated to dryness. Purification by flash-chromatography [silica gel, isohexane/ethyl acetate (3:1)] afforded the azide as yellow solid (740 mg, 2.1 mmol, 44 %).

[3-(2-azido-1-benzyl-1*H*-imidazol-4-yl)-prop-2-ynyl]-carbamic acid *tert*-butyl ester:

mp: 118-120 °C (decomp.). **TLC** [silica gel, isohexane/ethyl acetate (3:1)]: $R_f = 0.26$. ¹**H NMR** (400.0 MHz, CDCl₃): $\delta = 7.37-7.31$ (m, 3H, phenyl-CH), 7.16-7.13 (m, 2H, phenyl-CH), 6.83 (s, 1H, NCHCN), 4.85 (s, 2H, CH₂Ph), 4.74 (m, 1H, NH), 4.10 (d, ³J = 5.0 Hz, 2H, NHCH₂), 1.43 (s, 9H, C(CH₃)₃). ¹³**C NMR** (100.5 MHz, CDCl₃): $\delta = 155.2$ (NHC=O), 140.6 (NCN₃), 135.1 (phenyl- $C_{quart.}$), 129,0/128.4/127.4 (3C, phenyl-CH), 122.3 (NCHCN), 121.5 (NCHCN), 86.1 (NHCH₂CC), 79.9 (NHCH₂CC), 76.9 (C(CH₃)₃), 49.0 (CH₂Ph), 31.2 (NHCH₂), 28.4 (3C, C(CH₃)₃). **MS** (EI): m/z (%) = 352 (4) [M⁺], 91 (100). **HREIMS** (C₁₈H₂₀N₆O₂): calcd. 352.1648, found 352.1622. **IR** (KBr): $\tilde{\nu} = 3424$ cm⁻¹, 3261, 3154, 3035, 2978, 2932, 2236, 2151, 1721, 1527, 1498, 1477, 1449, 1392, 1368, 1252, 1168, 1143, 1047, 907, 857, 756, 714, 698, 650, 606. **UV** (CHCl₃): λ_{max} (lg ε) = 252 nm (3.11).

Reduction:

Red-Al (1.99 g, 65 % wt in toluene, 7.2 mmol, 3.5 eq.) was added to a mixture of the azide (720 mg, 2.0 mmol) in dry THF (30 ml) at 0 °C. After 5 h the reaction was quenched with saturated Na₂CO₃ (20 ml) and brine (20 ml). The mixture was extracted with dichloromethane (3 x 30 ml) and the combined organic layers were dried over MgSO₄, filtered and evaporated to dryness. Purification by flash-chromatography [silica gel, CHCl₃/MeOH/ (25:1)] afforded **6** as yellow oil (304 mg, 0.9 mmol, 46 %) and the corresponding aminoalkyne (180 mg, 0.6 mmol, 28 %).

6: TLC [silica gel, CHCl₃/MeOH (20:1)]: $R_f = 0.05$. ¹H NMR (400.0 MHz, CDCl₃): $\delta = 7.36$ -7.30 (m, 3H, phenyl-CH), 7.15-7.13 (m, 2H, phenyl-CH), 6.45 (s, 1H, NCHCN), 6.25 (d, ³J = 15.6 Hz, 1H, CH₂CHCH), 6.11 (dt, ³J = 15.6, 6.0 Hz, 1H, CH₂CHCH), 4.87 (s, 2H, CH₂Ph),

4.66 (t, ${}^{3}J = 5.5$ Hz, 1H, NH), 4.28 (s, 2H, NH₂), 3.82 (dd, ${}^{3}J = 6.0, 5.5$ Hz, 2H, NHCH₂), 1.43 (s, 9H, C(CH₃)₃). 13 C NMR (100.5 MHz, CDCl₃): $\delta = 155.8$ (NHC=O), 148.2 (NCNH₂), 135.1 (phenyl-C_{quart.}), 134.3 (NCHCN), 129,1/128.2/126.9 (3C, phenyl-CH), 123.4 (CH₂CHCH), 122.9 (NCHCN), 114.1 (CH₂CHCH), 79.2 (C(CH₃)₃), 48.7 (CH₂Ph), 42.6 (NHCH₂), 28.4 (3C, C(CH₃)₃). **MS** (EI): m/z (%) = 328 (39) [M⁺], 91 (100). **HREIMS** (C₁₈H₂₄N₄O₂): calcd. 328.1899, found 328.1908. **IR** (KBr): $\tilde{\nu} = 3431$ cm⁻¹, 2977, 2930, 1698, 1660, 1563, 1538, 1507, 1454, 1392, 1366, 1249, 1169, 1083, 953, 862, 700. **UV** (CHCl₃): λ_{max} (lg ε) = 267 nm (3.09).

[3-(2-amino-1-benzyl-1*H*-imidazol-4-yl)-prop-2-ynyl]- carbamic acid *tert*-butyl ester:

TLC [silica gel, CHCl₃/MeOH (20:1)]: $R_f = 0.12$. ¹H NMR (400.0 MHz, CDCl₃): δ = 7.36-7.30 (m, 3H, phenyl-CH), 7.14-7.12 (m, 2H, phenyl-CH), 6.70 (s, 1H, NCHCN), 4.99 (m, 1H, NH), 4.87 (s, 2H, CH₂Ph), 4.07 (d, ³J = 5.2 Hz, 2H, NHCH₂), 3.87 (s, 2H, NH₂) 1.42 (s, 9H, C(CH₃)₃). ¹³C NMR (100.5 MHz, CDCl₃): δ = 155.3 (NHC=O), 147.7 (NCNH₂), 135.3 (phenyl-C_{quart}), 129,2/128.3/127.0 (3C, phenyl-CH), 120.4 (NCHCN), 118.6 (NCHCN), 85.3 (NHCH₂CC), 79.8 (NHCH₂CC), 77.2 (C(CH₃)₃), 48.9 (CH₂Ph), 31.3 (NHCH₂), 28.4 (3C, C(CH₃)₃). MS (EI): m/z (%) = 326 (26) [M⁺], 91 (100). HREIMS (C₁₈H₂₂N₄O₂): calcd. 326.1743, found 326.1747. IR (KBr): $\tilde{\nu}$ = 3434 cm⁻¹, 2978, 2932, 2234, 1693, 1634, 1570, 1541, 1512, 1498, 1455, 1392, 1367, 1250. 1167, 1047, 1029, 941, 910, 861, 732, 702, 646. UV (CHCl₃): λ_{max} (lg ε) = 248 nm (3.02).

rac-(2-Amino-6,8-dioxo-7-phenyl-1-benzyl-1,4,5,5a,6,7,8,8a-octahydro-imidazo[4,5-e]isoindol-5-yl(methyl)- carbamic acid *tert*-butyl ester (8)

7 (73 mg, 0.22 mmol) and 4 (42 mg, 0.24 mmol, 1.1 equiv.) were stirred in CHCl₃ (15 ml) at room temperature. After 42 h the solvent was removed in vacuo. Purification by flash-chromatography [silica gel, CHCl₃/MeOH/ (20:1)] afforded racemic 8 as colorless solid (101 mg, 0.20 mmol, 91 %).

mp: 240-244 °C (decomp.). **TLC** [silica gel, CHCl₃/MeOH (20:1)]: $R_f = 0.12$. ¹**H NMR** (400.0 MHz, CDCl₃): $\delta = 7.45-7.36$ (m, 3H, *N*-phenyl-CH), 7.36-7.28 (m, 3H, phenyl-CH), 7.18 (d, ³*J* = 7.3 Hz, 2H, *N*-phenyl-CH), 7.07 (d, ³*J* = 7.3 Hz, 2H, phenyl-CH), 5.58 (d, ²*J* = 16.9 Hz, 1H, CH₂Ph), 5.22 (t, ³*J* = 6.2 Hz, 1H, NH), 5.00 (d, ²*J* = 16.9 Hz, 1H, CH₂Ph), 4.16 (s, br, 2H, NH₂), 3.98 (d, ³*J* = 8.1 Hz, 1H, 8-H), 3.65 (dd, ³*J* = 6.2, 6.6 Hz, 2H, NHCH₂), 3.53 (dd, ³*J* = 3.3, 8.1 Hz, 1H, 5a-H), 2.65 (d, ²*J* = 11.7 Hz, 1H, 4-H₁), 2.38 (m, 1H, 5-H), 2.33 (d, ²*J* = 11.7 Hz, 1H, 4-H₂), 1.43 (s, 9H, C(CH₃)₃). ¹³C NMR (100.5 MHz, CDCl₃): $\delta = 176.2$, 175.0 (C-6, C-8 (C=O)), 156.2 (NHC=O), 149.3 (CNH₂), 136.1 (phenyl-C_{quart}), 133.7 (CH₂CNC), 131.5 (*N*-phenyl-C_{quart}), 129,14/129.10 (2C, phenyl-CH), 128.7 (*N*-phenyl-CH), 128.0 (phenyl-CH), 126.43/126.42 (2C, phenyl-CH), 114.9 (CHCNCN₂), 79.5 (C(CH₃)₃), 46.8 (CH₂Ph), 43.1 (NHCH₂), 42.3 (C-5a), 40.1 (C-8), 36.1 (C-5), 28.5 (3C, C(CH₃)₃), 25.1 (C-4). MS (EI): *m/z* (%) = 501 (16) [M⁺], 371 (100). **HREIMS** (C₂₈H₃₁N₅O₄): calcd. 501.2376, found 501.2356. **IR** (KBr): $\tilde{\nu} = 3431$ cm⁻¹, 2977, 2929, 1773, 1713, 1628, 1538, 1498, 1455, 1385, 1251, 1172, 701, 627.

[3-(2-amino-1*H*-imidazol-4-yl)-allyl]- carbamic acid *tert*-butyl ester (9)

A mixture of **3** (163 mg, 0.34 mmol), MeOH (20 ml) and acetic acid (99 %, 2 ml) was stirred at 65 °C under reflux for 12 h. The solvent was removed in vacuo and purification by flash-chromatography [silica gel, CHCl₃/MeOH/NH₃ (70:10:1)] afforded **9** as pale yellow solid (77 mg, 0.32 mmol, 95 %).

mp: 160-162 °C (decomp.). **TLC** [silica gel, CHCl₃/MeOH/NH₃ (70:10:1)]: $R_f = 0.16$. ¹H **NMR** (400.0 MHz, CD₃OD): $\delta = 6.51$ (s, 1H, NCHC), 6.22 (dt, ³J = 15.9 Hz, ⁴J = 1.5 Hz, 1H,

CH₂CHC*H*), 5.87 (dt, ${}^{3}J$ = 15.9, 5.9 Hz, 1H, CH₂C*H*CH), 3.74 (d, ${}^{3}J$ = 5.9 Hz, 2H, NHC*H*₂), 1.44 (s, 9H, C(C*H*₃)₃). 13 C NMR (100.5 MHz, CD₃OD): δ = 156.9 (NHC=O), 149.8 (*C*NH₂), 128.7 (NCCHN), 122.8 (CH₂CHCH), 119.3 (CH₂CHCH), 114.4 (NCCHN)), 78.8 (*C*(CH₃)₃), 41.8 (NHCH₂), 27.4 (3C, C(CH₃)₃). MS (FAB+, NBA): *m*/*z* (%) = 239 (808) [M+H⁺], 122.2 (68), 57 (100). **IR** (KBr): $\tilde{\nu}$ = 3356 cm⁻¹, 2979, 2929, 1689, 1579, 1518, 1456, 1393, 1367, 1276, 1251, 1169, 1050, 1025, 961, 862, 779, 654. **UV** (MeOH): λ_{max} (lg ε) = 261 nm (2.81).

rac-(2-Amino-6,8-dioxo-7-phenyl-1,4,5,5a,6,7,8,8a-octahydro-imidazo[4,5-e]isoindol-5-yl(methyl)- carbamic acid *tert*-butyl ester (10)

9 (70 mg, 0.30 mmol) and **4** (58 mg, 0.33 mmol, 1.1 equiv.) in $CHCl_3$ (25 ml) were stirred at room temperature for 48 h. The solvent was removed in vacuo and purification by flash chromatography [silica gel, $CHCl_3/MeOH$ (15:1)] afforded the racemic product **10** (75 mg, 0.09 mmol, 58 %) as pale yellow solid.

mp: 185 °C (decomp.). **TLC** [silica gel, CHCl₃/MeOH/NH₃ aq. (70:10:1)]: $R_f = 0.22$. **TLC** [silica gel, CHCl₃/MeOH (10:1)]: $R_f = 0.17$. ¹H NMR (400.0 MHz, CD₃OD): $\delta = 7.45-7.34$ (m, 3H, phenyl-CH), 7.15 (d, ${}^{3}J = 7.3$ Hz, 2H, phenyl-CH), 3.69-3.60 (m, 3H, 5a-H, CH₂NH), 2.59 (dd, ${}^{3}J = 14.0$, 3.3 Hz, 1H, 4- H_{1}), 2.29 (dd, ${}^{3}J = 14.0$, 12.0 Hz, 1H, 4- H_{2}), 2.24 (m, 1H, 5-*H*), 1.44 (s, 9H, C(CH₃)₃). ¹H NMR (400.0 MHz, DMSO- d_6): $\delta = 7.43$ (dd, ³J = 7.7, 7.0 Hz, 2H, phenyl- CH), 7.37 (d, ${}^{3}J = 7.0$ Hz, 1H, phenyl-CH), 7.13 (d, ${}^{3}J = 7.3$ Hz, 2H, phenyl-CH), 7.02 (t, ${}^{3}J = 5.5$ Hz, 1H, CH₂NH), 5.93 (s, br, 2H, NH₂), 4.00 (d, ${}^{3}J = 7.3$ Hz, 1H, 8a-H), 3.67 $(dd, {}^{3}J = 7.7, 3.0 \text{ Hz}, 1\text{H}, 5a-H), 3.53 (\text{m}, 1\text{H}, CH_2\text{NH}), 3.38 (\text{m}, 1\text{H}, CH_2\text{NH}), 2.50 (\text{m}, 1\text{H}, 1\text{H})$ 4-*H*₁), 2.17-2.07 (m, 2H, 4-*H*₂, 5-*H*), 1.37 (s, 9H, C(C*H*₃)₃). ¹³C NMR (100.5 MHz, CD₃OD): $\delta = 177.4, 175.4$ (C-6, C-8 (C=O)), 156.3 (NHC=O), 150.4 (CNH₂), 132.2 (phenyl-C_{quart}), 128.6 (2C, phenyl-CH), 128.0 (phenyl-CH), 126.5 (2C, phenyl-CH), 124.2 (CH₂CNC), 119.9 (CHCNCN₂), 78.8 (C(CH₃)₃), 42.8 (NHCH₂), 42.6 (C-5a), 35.9 (C-5), 27.4 (C(CH₃)₃), 22.8 (C-4). ¹³C NMR (100.5 MHz, DMSO- d_6): $\delta = 177.0, 175.2$ (C-6, C-8 (C=O)), 156.2 (NHC=O), 149.6 (CNH₂), 132.6 (phenyl-C_{quart}), 129.3 (2C, phenyl-CH), 128.6 (phenyl-CH), 127.3 (2C, phenyl-CH), 124.2 (CH₂CNC), 118.7 (CHCNCN₂), 78.1 (C(CH₃)₃), 43.1 (NHCH₂), 43.0 (C-5a), 41.4 (C-8a), 35.8 (C-5), 28.8 (3C, C(CH₃)₃), 22.8 (C-4). MS (FAB+, NBA): m/z (%) = 412 (58) [M+H⁺], 356 (98), 57 (100). HRFABMS (C₂₁H₂₆N₅O₄): calcd. 412.1985, found 412.1989. **IR** (KBr): $\tilde{\nu} = 3402 \text{ cm}^{-1}$, 2978, 2931, 1711, 1624, 1599, 1500, 1444, 1368, 1252, 1170, 757, 692, 624. **UV** (MeOH): λ_{max} (lg ε) = 331 nm (2.34), 234 (3.02), 203 (3.30).

To a solution of amine **11** (500 mg, 1.32 mmol, 6 equiv.) and triethylamine (0.18 ml, 1.32 mmol, 6 equiv.) in THF (50 ml) were added triphosgene (65 mg, 0.22 mmol) at 0 °C. After stirring at room temperature for 20 h the solvent was removed in vacuo and purification by flash chromatography [silica gel, CHCl₃/MeOH (15:1)] afforded urea **12** (467 mg, 0.59 mmol, 90 %) as pale yellow solid.

mp: 170 °C (decomp.). **TLC** [silica gel, CHCl₃/MeOH/NH₃ (40:10:1)]: $R_f = 0.68$. ¹H NMR (400.0 MHz, CDCl₃): $\delta = 7.35$ -7.31 (m, 18H, phenyl-CH), 7.22-7.18 (m, 12H, phenyl-CH), 6.29 (s, 2H, NCCHN), 6.20 (d, ³J = 15.6 Hz, 2H, CH₂CHCH), 6.10 (dt, ³J = 15.6, 5.9 Hz, 2H, CH₂CHCH), 4.66 (t, ³J = 5.5 Hz, 2H, C=ONH), 3.85 (dd, ³J = 5.9, 5.5 Hz, 4H, NHCH₂), 3.56 (s, br, 4H, NH₂). ¹³C NMR (100.5 MHz, CDCl₃): $\delta = 158.0$ (NHC=O), 149.5 (2C, CNH₂), 141.4 (phenyl- C_{quart}), 133.1 (2C, NCCHN), 130.0 (12C, phenyl-CH), 128.2 (12C, phenyl-CH), 128.1 (6C, phenyl-CH), 123.4 (2C, CH₂CHCH), 123.1 (2C, CH₂CHCH), 115.8 (2C, NCCHN), 74.2 (2C, CPh₃), 42.7 (2C, NCH₂). **MS** (ESI): m/z (%) = 787 (62) [M+H⁺], 545 (88) [M-CPh₃+H⁺], 243 (100). **HRFABMS** (C₂₁H₂₆N₅O₄): calcd. 412.1985, found 412.1989. **IR** (KBr): $\tilde{\nu} = 3435$ cm⁻¹, 3059, 3032, 1968, 1617, 1533, 1492, 1446, 1325, 1241, 1187,

IR (KBr): $\nu = 3435$ cm⁻¹, 3059, 3032, 1968, 1617, 1533, 1492, 1446, 1325, 1241, 1187, 1157, 1110, 1086, 1034, 1002, 964, 906, 887, 747, 701, 673, 656, 638, 553. **UV** (CHCl₃): λ_{max} (lg ε) = 270 nm (4.48).

rac-4,5-Dibromo-1*H*-pyrrole-2-carboxylic acid (2-amino-6,8-dioxo-7-phenyl-3,4,5,5a,6, 7,8,8a-octahydro-imidazo[4,5-e]isoindol-5-ylmethyl)-amide (13)

Method 1: A solution of oroidin (1) (free base, 100 mg, 0.26 mmol) and N-phenylmaleimide (4) (89 mg, 0.51 mmol, 2 equiv.) in MeOH (10 ml) was stirred at 70 °C for 48 h. The solvent was removed in vacuo and the purification by flash chromatography [silica gel, CHCl₃/MeOH/NH₃ aq. (70:10:1)] afforded the racemic Diels-Alder product **13** (46 mg, 32 %) as pale red solid. Method 2: A solution of 1 (formate, 43 mg, 0.1 mmol), 4 (35 mg, 0.2 mmol, 2 equiv.) and Y(OTf)₃ (10 mg, 0.02 mmol, 20 mol %) in MeOH (4 ml) was stirred at 40 °C for 12 h. The solvent was removed in vacuo and the purification by flash chromatography [silica gel, CHCl₃/MeOH/NH₃ aq. (80:10:1)] afforded **13** (25 mg, 45 %) as pale red solid. **TLC** [silica gel, CHCl₃/MeOH/NH₃ aq. (70:10:1)]: $R_f = 0.19$. ¹H NMR (CD₃OD, 200.0) MHz): $\delta = 7.41$ (m, 2H, phenyl-CH), 7.35 (m, 1H, phenyl-CH), 7.14 (m, 2H, phenyl-CH), 6.80 (s, 1H, BrCCH), 4.02 (d, ${}^{3}J = 7.3$ Hz, 1H, 8a-H), 3.92 (d, ${}^{3}J = 6.6$ Hz, 2H, NHCH₂), 3.70 $(dd, {}^{3}J = 7.3 \text{ Hz}, {}^{3}J = 3.2 \text{ Hz}, 1\text{H}, 5\text{a-}H), 2.61 (d, {}^{2}J = 10.8 \text{ Hz}, 1\text{H}, 4\text{-}H_{1}), 2.40 (m, 1\text{H}, 5\text{-}H),$ 2.38 (d, ${}^{2}J = 10.8$ Hz, 1H, 4-H₂). ¹H NMR (DMSO-d₆, 400.0 MHz): $\delta = 11.71$ (s, br, BrCNH), 8.23 (dd, ${}^{3}J = 5.9$, 5.5 Hz, 1H, NHCH₂) 7.45 (m, 2H, phenyl-CH), 7.38 (m, 1H, phenyl-CH), 7.13 (m, 2H, phenyl-CH), 6.96 (s, 1H, BrCCH), 5.18 (s, br, 2H, NH₂), 3.97 (d, ³J = 7.4 Hz, 1H, 8a-H), 3.91-3.83 (m, 1H, NHCHH), 3.73 (dd, ${}^{3}J = 7.4$, 3.1 Hz, 1H, 5a-H), 3.71-3.65 (m, 1H, NHCHH), 2.51 (m, 1H, 4-H₁), 2.28-2.17 (m, 2H, 5-H, 4-H₂). ¹³C NMR $(CD_3OD, 100.5 \text{ MHz}): \delta = 177.1, 175.3 (C-6, C-8 (C=O)), 160.6 (NHC=O), 150.4$ (NCNH₂NH), 132.1 (phenyl-C_{auart}), 128.6 (2C, phenyl-CH), 128.1 (phenyl-CH), 127.5 (CHCC=O), 126.5 (2C, phenyl-CH), 126.3 (CH₂CHNH), 118.4 (CHCNCNH₂), 113.1 (CHCC=O), 104.8 (BrCNH), 98.6 (BrCCH), 42.7 (C-5a), 41.8 (NHCH₂), 35.5 (C-5), 22.9 (C-4). ¹³C NMR (DMSO- d_6 , 100.6 MHz): δ = 176.7, 174.9 (C-6, C-8 (C=O)), 159.1 (NHC=O), 149.7 (NCNH₂NH), 132.1 (phenyl-C_{auart}), 128.7 (2C, phenyl-CH), 128.2 (phenyl-CH), 128.0 (CHCC=O), 126.6 (2C, phenyl-CH), 112.5 (CHCC=O), 104.5 (BrCNH), 97.5 (BrCCH), 42.5 (C-5a), 41.7 (NHCH₂), 41.4 (C-8a), 35.0 (C-5), 23.0 (C-4). **MS** (ESI): m/z (%) = 561/563/565 (3/7/3) [M+H⁺]. **HRESIMS** (C₂₁H₁₉⁷⁹Br⁸¹BrN₆O₃): calcd. 562.9866, found 562.9864. **IR** (KBr): $\tilde{\nu} = 3418 \text{ cm}^{-1}$, 2929, 1775, 1709, 1631, 1563, 1522, 1499, 1420, 1386, 1322, 1194, 1127, 978, 819, 755, 691, 627. **UV** (MeOH): λ_{max} (lg ε) = 274 nm (3.17).

rac-4,5-Dibromo-1*H*-pyrrole-2-carboxylic acid(2-amino-6,8-dioxo-3,4,5,5a,6,7,8,8a-octa-hydro-imidazo[4,5-e]isoindol-5-ylmethyl)-amide (15)

A solution of **1** (formate, 43 mg, 0.1 mmol), maleimide (**14**) (20 mg, 0.2 mmol, 2 equiv.) and $Y(OTf)_3$ (10 mg, 0.02 mmol, 20 mol %) in MeOH (4 ml) was stirred at 40 °C for 12 h. The solvent was removed in vacuo and the purification by flash chromatography [silica gel, CHCl₃/MeOH/NH₃ aq. (40:10:1)] afforded the racemic Diels-Alder product **15** (26 mg, 54 %) as pale red solid.

TLC [silica gel, CHCl₃/MeOH/NH₃ aq. (40:10:1)]: $R_f = 0.17$. ¹H NMR (DMSO- d_6 , 400.0 MHz): $\delta = 8.22$ (dd, ³J = 5.9, 5.5 Hz, 1H, NHCH₂), 6.93 (s, 1H, BrCCH), 5.58 (s, br, 2H, NH₂), 3.86-3.79 (m, 1H, NHCHH), 3.73 (d, 7.2 Hz, 8a-H), 3.60-3.54 (m, 1H, NHCHH), 3.50 (dd, ³J = 7.2, 2.9 Hz, 1H, 5a-H), 2.44 (d, ³J = 10.9 Hz, 1H, 4- H_1), 2.14-2.05 (m, 2H, 5-H, 4- H_2). ¹³C NMR (DMSO- d_6 , 100.6 MHz): $\delta = 180.0$, 177.9 (C-6, C-8 (C=O)), 159.9 (NHC=O), 150.0 (NCNH₂NH), 129.1 (CHCC=O), 124.9 (CH₂CHNH), 119.4 (CHCNCNH₂), 113.5 (CHCC=O), 105.3 (BrCNH), 98.6 (BrCCH), 44.1 (C-5a), 43.0 (C-8a), 42.1 (NHCH₂), 35.7 (C-5), 23.7 (C-4). **MS** (ESI): m/z (%) = 485/487/489 (52/100/47) [M+H⁺]. **HRESIMS** (C₁₅H₁₃⁷⁹Br⁸¹BrO₃N₆): calcd. 486.9552, found 486.9548. **IR** (KBr): $\tilde{\nu} = 3406$ cm⁻¹, 1774, 1714, 1684, 1629, 1565, 1524, 1419, 1374, 1330, 1243, 1193, 1124, 1030, 977, 822, 757, 640, 616. **UV** (MeOH): λ_{max} (lg ε) = 275 nm (3.14), 218 (3.08).

rac-4-(2-Amino-3*H*-imidazol-4-ylmethyl)-6,7-dibromo-3,4-dihydro-2*H*-pyrrolo[1,2*a*]pyrazin-1-one (*rac*-cyclooroidin) (17)

A solution of **1** (formate, 70 mg, 0.16 mmol) in water (40 ml) and ethanol (8 ml) was heated at 95 °C in a sealed tube for 45 h. The solution was filtrated, washed with diethylether (20 ml) and concentrated in vacuo. *rac*-Cyclooroidin (**17**, formate, 65 mg, 15 mmol, 93 %) was obtained as a pale yellow solid without further purification.

¹**H** NMR (400.0 MHz, CD₃OD): $\delta = 8.52$ (s, 1H, *H*CO₂), 6.94 (s, 1H, BrCC*H*), 6.35 (s, 1H, NCC*H*N), 4.68 (m, 1H, 9-*H*), 3.87 (dd, ²*J* = 13.6 Hz, ³*J* = 4.2 Hz, 1H, 8a-*H*), 3.58 (dd, ²*J* = 13.6 Hz, ³*J* = 1.2 Hz, 1H, 8b-*H*), 2.96 (d, ³*J* = 7.0 Hz, 2H, CHC*H*₂C). ¹³C NMR (100.5 MHz, CD₃OD): $\delta = 169.8$ (HCO₂), 160.6 (*C*-6), 149.1 (*C*-14), 125.8 (*C*-11), 123.3 (*C*-5), 116.7 (*C*-4), 112.2 (*C*-12), 108.7 (*C*-2), 101.2 (*C*-3), 54.3 (*C*-9), 44.1 (*C*-8), 28.8 (*C*-10). MS (FAB+, NBA): *m*/*z* (%) = 388/390/392 (18/34/16) [M+H⁺]. HRFABMS (C₁₁H₁₂⁷⁹Br₂N₅O): calcd. 387.9409, found 387.9395. IR (KBr): $\tilde{\nu} = 3414$ cm⁻¹, 2926, 1646, 1551, 1466, 1429, 1377, 1338, 1120, 1055, 965, 751, 588. UV (MeOH): λ_{max} (lg ε) = 224 nm (3.02), 283 (2.87), 396 (1.92).

Selected NMR spectra: see following pages.

